1. A realistic view of AI
Goldilocks rule for AI
- Toop optimistic: Sentient / super-intelligent AI killer robots coming soon
- Too pessimistic: AI cannot do everything, so an AI winter is coming
- Just right: AI can't do everything, but will transform industries
Limitations of AI
- Performance limitations
- Explainability is hard (but sometimes doable)
- Biased AI through biased data
- Adversarial attacks on AI
2. Discrimination / Bias
AI learning unhealthy stereotypes
- Man : Woman as Father : Mother
- Man : Woman as King : Queen
- Man : Computer programmer as Woman : Homemaker → Computer programmer
Why bais matters
- Hiring tool that discriminated against women
- Facial recognition working better for light-skinned than dark-skinned individuals
- Bank loan approvals
Combating bias
- Techinical solutions:
- E.G., "zero out" the bias in words
- Use less biased and/or more inclusive data
- Transparency and/or auditing processes
- Diverse workforce
- Creates less biased applications
3. Adversarial attacks on AI
Adversarial attacks on AI
- 이미지를 분류함에 있어서 약간의 변화를 주더라도 컴퓨터는 이를 구분할 방법이 없다.
Physical attacks
- 예를 들어 stop 사인을 stop으로 인지하지 못하게 만들 수도 있다.
그런데 이런 과정이 아주 작은 스티커 하나만을 더함으로써 진행될 수 있으므로 의도적으로 학습을 방해하기가 아주 쉽다는 것이다.
Adversarial defenses
- Defenses do exist, but incur some cost
- Similar to spam vs. anti-spam, we may be in an arms race for some applications
출처: Coursera, AI For Everyone, DeepLearning.AI
'AI For Everyone > 4주차' 카테고리의 다른 글
AI and Society(3) (0) | 2022.10.12 |
---|---|
AI and Society(2) (0) | 2022.10.10 |