LLM

· Paper Review
관심 있는 NLP 논문을 읽어보고 간단히 정리했습니다. 혹시 부족하거나 잘못된 내용이 있다면 댓글 부탁드립니다 🙇‍♂️usechatgpt init success[Microsoft, BIGAI]- raw corpora로 continued pre-training을 수행하는 경우 도메인 지식은 늘어나지만 prompting 능력은 급격하게 감소함을 확인- raw corpora를 reading comprehension texts로 바꾸는 간단한 방법을 제안- 이는 어떤 종류의 pre-training corpora에도 적용 가능한 방식: 본 논문에서는 biomedicine, finace, law 분야에서 활용  출처 : https://arxiv.org/abs/2309.09530 Adapting Large Lang..
· Paper Review
관심 있는 NLP 논문을 읽어보고 간단히 정리했습니다. 혹시 부족하거나 잘못된 내용이 있다면 댓글 부탁드립니다 🙇‍♂️usechatgpt init success[Google, Stanford University]- 모델이 태스크를 이해할 때 참고할 instruction 또는 natural language가 없는 경우, input-label mapping을 정보로 이용하는 Symbol Tuning을 제안- unseen in-context learning tasks에 대한 성능이 뛰어나고 underspecified prompts에 더욱 robust하게 됨 - 학습하지 않았던 algorithmic reasoning task에 뛰어난 성능 & flipped-labels 태스크 수행 능력이 복구됨 출처 : ht..
· Paper Review
관심 있는 NLP 논문을 읽어보고 간단히 정리했습니다. 혹시 부족하거나 잘못된 내용이 있다면 댓글 부탁드립니다 🙇‍♂️Published as a main conference paper at EMNLP 2023. Code available at this URLusechatgpt init success[University of Washington, AI2, Meta AI]- long-form text generation의 factuality를 평가할 때, binary judgments(supported/unsupported) & huge cost of human evaluatoin 이슈가 존재- 생성 결과를 일련의 atomic facts로 쪼갠 뒤 각 fact를 평가한 결과를 합쳐 score를 구하는 방식..
· Paper Review
관심 있는 NLP 논문을 읽어보고 간단히 정리했습니다. 혹시 부족하거나 잘못된 내용이 있다면 댓글 부탁드립니다 🙇‍♂️usechatgpt init success[KAIST]- 사람과 GPT-4의 판단에 근사하는 open-source evaluator LM, Prometheus 2를 공개- direct assesssment와 pair-wise ranking 형식을 둘 다 처리할 수 있음- 유저가 정의한 평가 기준을 반영출처 : https://arxiv.org/abs/2405.015351. Introduction생성형 언어 모델이 크게 주목을 받고 사용됨에 따라 이에 대한 평가를 어떻게 내려야 하는가에 대한 논의가 끊이지 않고 있습니다.예전 언어 모델들은 출력해야 하는 답이 명확히 존재하는 태스크를 수행했..
· Paper Review
관심 있는 NLP 논문을 읽어보고 간단히 정리했습니다. 혹시 부족하거나 잘못된 내용이 있다면 댓글 부탁드립니다 🙇‍♂️usechatgpt init success[Microsoft]- 3.3T개 토큰을 학습한 3.8B 사이즈의 모델 phi-3-mini를 공개. 사이즈가 굉장히 작음에도 불구하고 Mixtral 8x7B, GPT-3.5급의 추론 능력을 보여주어 화제.- multi-lingual 특성을 강화하여 학습한 phi-3-small 모델(7B)과 mini 모델을 추가학습한 phi-3-medium 모델(14B)을 함께 공개 출처 : https://arxiv.org/abs/2404.142191. Introduction지난 몇 년 간 인공지능의 눈부신 발전은 점점 더 큰 모델과 데이터셋을 만..
· Paper Review
관심 있는 NLP 논문을 읽어보고 간단히 정리했습니다. 혹시 부족하거나 잘못된 내용이 있다면 댓글 부탁드립니다 🙇‍♂️ usechatgpt init success [Mila, McGill University, Facebook CIFAR AI Chair] - decoder-only LLM을 강력한 텍스트 encoder로 변환해주는 간단한 unsupervised approach, LLM2Vec - 1) enabling bidirectional attention 2) masked next token prediction 3) unsupervised contrastive learning, 세 개의 요소로 구성 - publicly available 데이터만 이용하여 모델을 학습 - supervised contras..
chanmuzi
'LLM' 태그의 글 목록 (2 Page)