gradient descent

· Paper Review
최근(2023.06)에 나온 논문을 읽어보고 간단히 정리했습니다. 혹시 부족하거나 잘못된 내용이 있다면 댓글 부탁드립니다 🙇‍♂️ usechatgpt init success Second-order Clipped Stochastic Optimization, Sophia. diagonal Hessian을 이용하여 Adam보다 2배 이상 빠른 optimizer. 현재 딥러닝 분야에서 가장 널리 쓰이는 optimizer는 Adam family입니다. 더 큰 사이즈의 모델들이 더 좋은 성능을 보인다는 scaling law에 따라 요구되는 연산량은 점점 증가하는 추세이고, 본 논문과 같은 연구는 이를 최소화하기 위한 노력의 일환으로 볼 수 있습니다. 오늘은 Sophia라는 optimizer의 특징을 간단히 정리해보..
1. Optimization Algorithms (Quiz) minibatch, layer, example에 대한 notation 각각 { }, [ ], ( ) 기호를 사용한다. vectorization Batch gradient descent는 한꺼번에 모든 데이터를 묶어 학습하겠다는 것이다. 따라서 memory의 문제만 없다면 vectorization을 가장 많이 수행하는 학습법일 것이다. 그러나 batch gradient descent는 progress를 진행하기 전에 전체 training set을 처리해야 한다는 문제점이 있다. 한편 stochastic gradient descent는 여러 example을 vectorization 할 수 없다는 단점이 있다. iteration - cost(J) g..
1. Gradient Descent with Momentum Gradient descent example 빨간 점을 global minimum이라고 본다면 일반적인 Gradient Descent를 수행했을 때는 파란색 그래프와 같은 양상이 나타날 것이다. 우리는 위 아래로 흔들리는 폭을 줄이면서도 보다 큰 보폭으로 global minimum에 접근할 수 있도록 하는 방법을 떠올려볼 수 있다. 대표적인 방식 중 하나가 Momentum이다. 이는 gradient descent를 수행하는 매 step이 독립적인 것이 아니라 현재 step에 이전 step이 영향을 주는 것으로 받아들이는 방식이라고 볼 수 있다. 즉, exponentially weighted averages를 구하는 방식처럼 현재항과 이전항에 가..
1. Welcome to Module 5! 최적의 평균과 분산을 구하는 방법에 대해 생각해보자. 어떤 함수에 대해 임의의 x값을 대입하고 그 미분계수를 통해 반복적으로 최적의 x값을 찾아나갈 수 있다. 이때 함수값을 미분계수로 나눈 값을 빼는 방식을 '반복(iterate)'하면 된다. 이런식으로 과정을 반복하는 방법을 'Newton-Raphson'이라고 부른다. 시작값을 잘못 설정하면 위와 같이 closed loop에 갇힐 수 있다. 혹은 너무 작은 미분계수를 갖는 점에서 시작하면 x의 변화량이 거의 없어서 의미 없는 학습을 반복하게될 가능성이 있다. 2. Newton-Raphson in one dimension (Quiz) 도함수 구하기 다항함수에 대해 미분을 수행한 결과를 직접 입력하면 된다. New..
1. Shallow Neural Networks (Quiz) X는 각 column별로 하나의 training example인 matrix이다. tanh를 activation function으로 사용하면 그 범위가 -1부터 1까지이므로 데이터를 0을 중심으로 모이게한다. 따라서 학습을 보다 간단하게 만들어버려서 제대로 학습이 이루어지지 않는다. binary classification의 output layer activation function은 sigmoid가 적절하다. axis = 0을 기준으로 sum을 하면 행이 날아가고 열이 남는다.(행을 합쳐서 각 열별로 표시) 반대로 axis = 1을 기준으로 sum을 하면 열이 날아가고 행이 남는다.(열을 합쳐서 각 행별로 표시) weight와 bias를 0으로..
1. Gradient Descent for Neural Networks 두 개의 hidden layers가 존재하는 neural network에 대해 gradient descent의 parameters는 네 개이다. w1, b1, w2, b2. 이를 cost function의 매개변수로 넣고 이 값들을 최적화하여 cost의 값을 최소화하는 것이 최종 목표이다. 값을 업데이트 하는 과정은 cost function을 각 변수로 편미분하여 구한 미분계수를 빼는 방식으로 진행한다. 이 반복은 적절한 값이 찾아질 때까지 계속된다. Formulas for computing derivatives forward/back propagation 의 공식이 나열되어있다. forward propagation은 앞에서 다룬 내..
chanmuzi
'gradient descent' 태그의 글 목록